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S1:  Overview: Machine Operating Points 

Lowest Order: 

1. Stable single-particle centroid 

Next Order: 

2. Stable rms envelope

Higher Order: 

3. “Stable” Vlasov description

Transport of a relatively smooth initial beam distribution can fail or 

become “unstable” within the Vlasov model for several reasons:

� Collective modes internal to beam become unstable and grow

- Large amplitudes can lead to statistical (rms) beam emittance growth

� Excessive halo generated

-  Increased statistical beam emittance and particle losses

� Combined processes above

Good transport of a single component beam with intense space-charge 

described by a Vlasov-Poisson type model requires:
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Transport limits in periodic (FODO) quadrupole lattices that result from 

higher order processes have been measured in the SBTE experiment.  

These results have only a limited theoretical understanding in 20+ years

[M.G. Tiefenback, Ph.D Thesis, UC Berkeley (1986)]

Low Space-Charge Intensity Transport

Envelope Instability 

– Not Practical for Applications

Emittance Blow Up (Unexplained)

-- Not Practical for Applications

x
x High Space-Charge Intensity Transport

- Valid for Practical Applications

X HCX experiment

    (2004)

Empirical fit to higher-order 

stability boundary

Limits defined with respect 

to reasonable (smooth)

initial distributions
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Summary of beam stability with intense space-charge in a 

quadrupole transport lattice:  centroid, envelope, and theory 

boundary based on higher order emittance growth/particle losses 

Theory stability 

boundary points

[Lund and Chawla, NIMA 561 203 (2006)]

New theory analyzes processes relating to AG transport limits without equilibria 

 Suggests near core, chaotic halo resonances can drive strong emittance growth

   and particle losses  

Results checked with fully self-consistent simulations

Analogous results (with less “instability”) exist for solenoidal transport 
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S2:  Overview: 

Collective Modes and Transverse Kinetic Stability 

In discussion of transverse beam physics we have focused on:

Equilibrium

 Used to estimate balance of space-charge and focusing forces 

- KV model for periodic focusing

- Continuous focusing equilibria for qualitative guide on space-charge effects

such as Debye screening and nonlinear equilibrium self-field effects

Centroid/Envelope Modes and Stability

 Lowest order collective oscillations of the beam

- Analyzed assuming fixed internal form of the distribution

 Model only exactly correct for KV equilibrium distribution 

- Should hold in a leading-order sense for a wide variety of real beams

 Predictions of instability regions are well verified by experiment 

- Significantly restricts allowed system parameters for periodic focusing lattices
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Example – Envelope Modes on a Round, Continuously Focused Beam

The analog of these modes in a periodic focusing lattice can be destabilized 

 Constrains system parameters to avoid band (parametric) regions of instability



SM Lund, USPAS, 2006 11Transverse Kinetic Stability

Reminder (lecture on Centroid and Envelope Descriptions of Beams):

Instability bands of the KV envelope equation are well understood in

 periodic focusing channels

[S.M. Lund and B. Bukh, PRSTAB 024801 (2004)]

Solenoid (     = 0.25) Quadrupole FODO (     = 0.70)

Envelope Mode Instability Growth Rates
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More instabilities are possible than can be described by statistical 

(moment/envelope) equations.   Look at a more complete, Vlasov based kinetic 

theory including self-consistent space-charge:

Higher-order Collective (internal) Mode Stability

 Perturbations will generally drive nonlinear space-charge forces

 Evolution of such perturbations can change the beam rms emittance

 Many possible internal modes of oscillation should be possible 

- Frequencies can differ significantly from envelope modes

- Creates more possibilities for resonant exchanges with a periodic focusing 

  lattice and various beam characteristic responses opening many 

            possibilities for system destabilization
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Plasma physics approach to beam physics:

Resolve: 

equilibrium perturbation

Comments:

Attraction is to parallel the impressive successes of plasma physics

- Gain insight into preferred state of nature

Beams are born off a source and may not be close to an equilibrium condition 

- Appropriate single particle constants of the motion unknown for    

       periodic focusing lattices other than the KV distribution

Intense beam self-fields and finite radial extent vastly complicate equilibrium 

description and analysis of perturbations 

 

and carry out equilibrium + stability analysis 
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Vlasov Equation (see J.J. Barnard, Introductory Lectures): 

Review:  Vlasov Model: Transverse Vlasov model for a coasting, single species 

beam with electrostatic self-fields propagating in an applied focusing lattice:

Particle Equations of Motion: 

Hamiltonian (see S.M. Lund, lectures on Transverse Particle Equations of Motion): 

Poisson Equation:

 + boundary conditions on 

charge, mass 

axial relativistic factors

transverse particle coordinate, angle 

single particle distribution

single particle Hamiltonian
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Review: Focusing lattices, continuous and periodic

(simple piecewise constant):

Occupancy

Syncopation Factor

Lattice Period

Solenoid description

carried out implicitly in

Larmor frame 

[see Lund and Bukh, 

PRST- Accel. and Beams 7, 

024801 (2004), Appendix A]
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Continuous Focusing:

Quadrupole Focusing:

Solenoidal Focusing (in Larmor frame variables):

We will concentrate on the continuous focusing model in these lectures

 Kinetic theory is notoriously complicated even in this (simple) case

 By analogy with envelope mode results expect that kinetic theory of 

   periodic focusing systems to have more instabilities

 As in equilibrium analysis the continuous model can give simplified insight 

   on a range of relevant kinetic stability considerations
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S3: Linearized Vlasov Equation

Because of the complexity of kinetic theory, we will limit discussion to a simple

continuous focusing model Vlasov-Poisson system for a coasting beam within a 

round pipe

Then expand the distribution and field as:

equilibrium perturbation

At present, there is no assumption that the perturbations are small.
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The equilibrium satisfies: 

(see S.M. Lund, lectures on Transverse Equilibrium Distributions)

any non-negative function

Because the Poisson equation is linear:

The unperturbed distribution must then satisfy the equilibrium Vlasov equation:
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Insert the perturbations in Vlasov's equation and expand terms:

equilibrium term

equilibrium characteristics

of perturbed distribution

nonlinear termperturbed field 

linear correction term

0

Take the perturbations to be small-amplitude:

and neglect the nonlinear terms to obtain the linearized Vlasov-Poisson system:

<---  follows automatically from distribution/Poisson eq
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Solution of the Linearized Vlasov Equation, the method of characteristics

The linearized Vlasov equation is a integral-partial differential equation system

 Highly nontrivial to solve

 Method of characteristics can be employed to simplify analysis due to the

   structure of the equation

Note that the equilibrium Vlasov equation is:

Interpret:

as a total derivative evaluated along an equilibrium particle orbit.  This suggests 

employing the method of characteristics.
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Method of Characteristics:
Equilibrium orbit:

“Initial” conditions of characteristic orbit:

Then the linearized Vlasov equation can be expressed as:

This is a total derivative and can be integrated:

To analyze instabilities assume growing perturbations that grow in s

 Neglect initial conditions at                    and integrate
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Gives the self-consistent evolution of the perturbations

 Similar statement for nonlinear perturbations  (Homework problem)

Effectively restates the Poisson equation as a differential-integral equation that is 

solved to understand the evolution of perturbations

 Simpler to work with but still very complicated 
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S4: Collective Modes on a KV Equilibrium Beam

Unfortunately, calculation of normal modes is generally complicated even in 

continuous focusing.  Nevertheless, the normal modes of the KV distribution can 

be analytically calculated and give insight on the expected collective response of a 

beam with intense space-charge.  
Review: Continuous Focusing KV Equilibrium Undepressed 

betatron wavenumber

Beam edge radius

Beam number density

Dimensionless perveance

rms edge emittance
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Further comments on the KV equilibrium: Distribution Structure

Equilibrium distribution:

Forms a highly singular hyper-shell in 4D phase-space

Singular distribution has large “Free-Energy” to drive many instabilities

- Low order envelope modes are physical and highly important 

  (see lectures on Centroid and Envelope Descriptions of Beams)

Perturbative analysis shows strong collective instabilities

- Hofmann, Laslett, Smith, and Haber, Part. Accel. 13, 145 (1983)

- Higher order instabilities (collective modes) have unphysical aspects

  due to (delta-function) structure of distribution and must be applied 

  with care (see lectures on Kinetic Stability of Beams)

- Instabilities can cause problems if the KV distribution is employed 

  as an initial beam state in self-consistent simulations

Schematic:
4D singular hyper-shell surface
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Expand Vlasov's equation to linear order with:

A full kinetic stability analysis of the KV equilibrium distribution is 

complicated and uncovers  many strong instabilities

[ I. Hofmann, J.L. Laslett, L. Smith, and I. Haber, Particle Accel. 13, 145 (1983); 

  R. Gluckstern, Proc. 1970 Proton Linac Conf., Batavia 811 (1971) ]

Solve the Poisson equation:

using truncated polynomials for internal to the beam to represent a 

“normal mode” 

Truncated polynomials can meet all boundary conditions

Eigenvalues of a Floquet form transfer matrix analyzed for stability properties

- Lowest order results reproduce KV envelope instabilities

- Higher order results manifest many strong instabilities

can be restricted to even or odd terms

order or mode

= perturbation

= equilibrium
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Higher order kinetic instabilities of the KV equilibrium are strong and 

cover a wide parameter range for periodic focusing lattices

Example: FODO Quadrupole Stability
4th order even mode

 [Hofmann et. al, Particle Accel. 13, 145 (1983)]

(undepressed) (fully depressed)-->   increasing space-charge  -->

Instabilities

(space-charge parameter)
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The continuous focusing limit can be analyzed to better understand 

properties of internal modes on a KV beam (1) 

[S. Lund and R. Davidson, Physics of Plasmas 5, 3028 (1998): see Appendix B, C]

Continuous focusing, symmetric beam:

Mode eigenfunction (2 n “order”):

Potential Density

nth order Legendre polynomial
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The continuous focusing limit can be analyzed to better understand 

properties of internal modes on a KV beam (2) 

Mode dispersion relation for              variations:

where:

Eigenfunction structure suggestive of wave perturbations often observed 

internal to the beam in simulations for a variety of beam distributions

n distinct branches for 2n order (real coefficient) polynomial dispersion 

relation

Some range of               will be unstable for all n > 1

- Instability exists for some n for 

- Growth rates are strong
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Continuous focusing limit dispersion relation results for KV beam stability

Notation Change:

[S. Lund and R. Davidson, 

  Physics of Plasmas 5, 3028 (1998): 

  see Appendix B, C]
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For continuous focusing, fluid theory shows that at least some branches of 

the KV dispersion relation are physical 

[S. Lund and R. Davidson, Physics of Plasmas 5, 3028 (1998)]

Fluid theory:
KV equilibrium distribution is reasonable in fluid theory

- No singularities

- Flat density and parabolic radial temperature profiles

Theory truncated by assuming zero heat flow

Mode eigenfunctions:

Exactly the same as derived under kinetic theory!

Mode dispersion relation:

Single, stable branch

- Agrees well with high frequency branch from kinetic theory

Results show that aspects of higher-order KV internal modes are physical!
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Continuous focusing limit dispersion relation results for KV beam stability

Notation Change:

[S. Lund and R. Davidson, 

Physics of Plasmas 5, 3028 (1998)]

n = 1, 

envelope 

mode

curves

overlap Red:    Fluid Theory

(no instability)

Black: Kinetic Theory

(unstable branches)
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S5: Global Conservation Constraints 

Apply for any initial distribution, equilibrium or not.

Strongly constrain nonlinear evolution of the system.

Valid even with a beam pipe provided that particles are not lost from the system and 

that symmetries are respected.

Useful to bound perturbations, but yields no information on evolution timescales.

1) Generalized Entropy

Applies to all Vlasov evolutions.

// Examples

// 

Line-charge:

Entropy:



SM Lund, USPAS, 2006 33Transverse Kinetic Stability

2) Transverse Energy in continuous focusing

Here,

~ Kinetic Energy

~ Potential Energy 

   of applied focusing forces

~ Self-Field Energy

Does not hold when focusing forces vary in s

- Can still be approximately valid for rms matched beams where energy will

          regularly pump into and out of the beam

Self field energy term diverges in radially unbounded systems (no aperture)

- Still useful if an appropriate infinite constant is subtracted (to regularize)
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Comments on system energy form:

Analyze the energy term:

Employ the Poisson equation:

or infinite constant 

in free space 

Giving:

Note the relation to the system Hamiltonian with a symmetry factor to not double 

count particle contributions

symmetry factor

zero for grounded aperture

in finite system



SM Lund, USPAS, 2006 35Transverse Kinetic Stability

Comments on self-field energy divergences:

In unbounded (free space) systems, far from the beam the field must look like a 

line charge:

finite term lograthmically 

divergent term

This divergence can be subtracted out to thereby regularized the system energy

-  Renders energy constraint useful for application to equilibria in radially

  unbounded systems such as thermal equilibrium

Resolve the total field energy into a finite (near) term and a divergent term:

total
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3) Angular Momentum

Focusing and beam pipe (if present) must be axisymmetric

- Useful for solenoidal magnetic focusing

- Does not apply to alternating gradient quadrupole focusing 

   since such systems do not have the required axisymmetry

4) Axial Momentum

Trivial here, but useful when models are generalized for coasting beams with

axial momentum spread
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Comments on applications of the global conservation constraints:

Global invariants strongly constrain the nonlinear evolution of the system

- Only evolutions consistent with Vlasov's equation are physical

- Constraints consistent with the model can bound kinematically accessible 

   evolutions

Application of the invariants does not require (difficult to derive) normal mode 

descriptions

- But cannot, by itself, provide information on evolution timescales

Use of global constraints to bound perturbations has appeal since distributions in

real machines may be far from an equilibrium.  Used to:

- Derive sufficient conditions for stability 

- Bound particle losses [O'Neil, Phys. Fluids 23, 2216 (1980) ]

- Bound changes of system moments (for example the rms emittance)

   under assumed relaxation processes

- Application does not require (difficult to derive) normal mode descriptions
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S6: Kinetic Stability Theorem for continuous focusing equilibria

[Fowler, J. Math Phys. 4, 559 (1963); Gardner, Phys. Fluids 6, 839 (1963);

 R. Davidson, Physics of Nonneutral Plasmas, Addison-Wesley (1990)]

Resolve:

Equilibrium (subscript 0) distribution

Perturbation about equilibrium

Employ generalized entropy and transverse energy global constraints:

Apply to equilibrium and full distribution to form an effective “free-energy”:
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The perturbed potential satisfies:

Take and Taylor expand to 2nd order

Without loss of generality, choose:

Then

Some algebra (few lines using partial integration) yields:

If then F is a sum of two positive definite terms and 

perturbations are bounded by F = const.
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Is a sufficient condition for stability

- Equilibria that violate may or may not be stable

Mean value theorem can be used to generalize conclusions for arbitrary amplitude

- R. Davidson proof 

If is a monotonic decreasing function of with

    then the equilibrium defined by is stable to 

arbitrary small-amplitude perturbations. 

Kinetic Stability Theorem

Value of F set by initial

perturbations and

concavity bounds

excursions

Drop zero subscripts in stability statement:



SM Lund, USPAS, 2006 41Transverse Kinetic Stability

// Example Applications of Kinetic Stability Theorem

// 

KV Equilibrium:

Thermal Equilibrium:

changes sign

inconclusive stability by theorem

monotonic decreasing, stable by theorem

,

Full normal mode analysis in Kinetic theory shows strong instabilities when space-charge 

becomes strong 

Not surprising, delta function represents a highly inverted population in phase-space with 

“free-energy” to drive instabilities

Waterbag Equilibrium:

monotonic decreasing, stable by theorem
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S7: rms Emittance Growth and Nonlinear Forces

Fundamental theme of beam physics is to minimize statistical beam emittance 

growth in transport to preserve focusability on target  

Return to the full transverse beam model with:

Linear Space-Charge Coefficient

Nonlinear Forces + Linear Skew Coupled Forces

(Applied and Space-Charge)

// Examples:

Self-field forces within an axisymmetric (mismatched) KV 

beam core in a continuous focusing model

Electric (with normal and skew components) 

sextupole optic based on multipole expansions

(see lectures on Particle Equations of Motion)

and express as:

//
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From the definition of the statistical (rms) emittance:

The linear terms cancel to show  for any beam distribution that:

Differentiate the squared emittance and apply the chain rule:

Insert the equations of motion:
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Implications of:

Emittance evolution/growth is driven by nonlinear or skew coupling forces 

- Nonlinear terms can result from applied or space-charge fields

- More detailed analysis shows that skew coupled forces 

   cause x-y plane transfer oscillations but there is still a 4D quadratic invariant

Minimize nonlinear forces to preserve emittance and maintain focusability

If the beam is accelerating, the equations of motion become:

and this result can be generalized (see homework problems) using the normalized 

emittance:



SM Lund, USPAS, 2006 45Transverse Kinetic Stability

S8: rms Emittance Growth and Nonlinear Space-Charge Forces
[Wangler et. al, IEEE Trans. Nuc. Sci. 32, 2196 (1985), Reiser, Charged Particle Beams, (1994)]

In continuous focusing all nonlinear force terms are from space-charge, giving:

For any axisymmetric beam it can be shown that:

self-field energy 

(per unit axial length)

These results give (Wangler, Lapostolle):

For any axisymmetric beam it can also be shown that:

W for an rms equivalent

uniform density beam
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Applies to both radially bounded and radially infinite systems

Result does not require an equilibrium for validity – only axisymmetry

For a beam with s-variation, this result suggests that only the (mismatched) KV 

equilibrium can subsequently evolve with no change in rms emittance

Result can be partially generalizable [J. Struckmeier and I. Hofmann, Part. Accel. 

39, 219 (1992)] to an unbunched elliptical beam

- Result may have implications to existence/nonexistence of nonuniform 

 density Vlasov equilibria in periodic focusing channels 

If the rms beam radius does not change much in the beam evolution:

Then the equation can be integrated to show that:

Final State Value – Initial State Value
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S9: Uniform Density Beams and Extreme Energy States

Construct minima of the self-field energy per unit axial length:

subject to: ... fixed line-charge

... fixed rms equivalent beam radius

Using the method of Lagrange multipliers, vary (Helmholtz free energy):

and require that variations satisfy the Poisson equation and conserve charge

Then variations terminate at 2nd order giving:

Integrating the 2nd term by parts and employing the Poisson equation then gives:
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For an extremum, the first order term must vanish, giving within the beam:

Result:

At fixed line charge and rms radius, a uniform density beam

minimizes the electrostatic self-field energy

From the Poisson equation, this can only be consistent with a uniform density 

axisymmetric beam.  The 2nd order term is positive definite, immediately implying 

that this extremum is a global minimum of F  
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This result, combined with Wangler's Theorem:

At fixed line charge and rms radius, a uniform density beam

minimizes the electrostatic self-field energy

shows that:

Self-field energy drives emittance evolution

- Nonuniform density => more     uniform density   <=> local emittance growth

- Uniform density => more nonuniform density <=> local emittance reduction

Try to maintain density uniformity to preserve beam emittance

Results can be partially generalized to 2D elliptical beams

[J. Struckmeier and I. Hofmann, Part Accel. 39, 219 (1992)]
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S10: Collective Relaxation and rms Emittance Growth

The space-charge profile of intense beams can be born highly nonuniform out of 

nonideal (real) injectors or become nonuniform due to a variety of (error)

processes.  Also, low-order envelope matching of the beam may be incorrect due 

to focusing and/or distribution errors. 

How much emittance growth and changes in other characteristic parameters may 

be induced by relaxation of characteristic perturbations?

 Employ Global Conservation Constraints of system to bound possible changes

 Assume full relaxation to a final, uniform density state for simplicity

What is the mechanism for the assumed relaxation?

 Collective modes launched by errors will have a broad spectrum

- Phase mixing can smooth nonuniformities – mode frequencies incommensurate

 Nonlinear interactions, Landau damping, interaction with external errors, ...

 Certain errors more/less likely to relax:

- Internal wave perturbations expected to relax due to many interactions

- Envelope mismatch will not (coherent mode) unless amplitudes are very large

  producing copious halo and nonlinear interactions
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Nonuniform Initial Beam Uniform Final Beam

Relaxation

Processes

Example: Relaxation of nonlinear space-charge waves

Reference:  High resolution self-consistent PIC simulations shown in class

Continuous focusing and a more realistic FODO transport lattice

- Relaxation more complete in real lattice due to a richer frequency spectrum

Relaxations surprisingly rapid:  few undepressed betatron wavelengths 
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Hollowed Initial Density Peaked Initial Density

Analogous definitions are made for the radial temperature profile of the beam

Initial Nonuniform Beam Parameterization

hollowing parameter

radial power
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Example Simulations, Initial Nonuniform Beam

[Lund, Grote, and Davidson, Nuc. Instr. Meth. A 544, 472 (2005)]

Initial density: h=1/4, p=8 Initial Temp: h = infinity, p=2
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Theory estimates made from global conservation constraints work well but what if 

the beam relaxed to a smooth thermal equilibrium profile instead?

Essentially

no rms 

changes

in 2nd step! 

Lund, Barnard, and Miller, PAC 1995, p. 3278
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S11: Phase Mixing and Landau Damping in Beams

To be covered in future editions of notes
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These slides will be corrected and expanded for reference and any future 

editions of the US Particle Accelerator School class:

Beam Physics with Intense Space Charge, by J.J. Barnard and S.M. Lund

Corrections and suggestions are welcome.  Contact:

SMLund@lbl.gov

Steven M. Lund 

Lawrence Berkeley National Laboratory 

BLDG 47 R 0112

1 Cyclotron Road

Berkeley, CA 94720-8201

 (510) 486 – 6936

Please do not remove author credits in any redistributions of class material.
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